
 

Version 1.4
Copyright © 2016

ESP8266 Non-OS SDK
IoT_Demo Guide

About This Guide
The document is structured as follows.

Release Notes

Chapter Title Content

Chapter 1 Overview Introduction to the IoT_Demo.

Chapter 2 IoT_Demo Application Introduction to compiling and using the IoT_Demo application.

Chapter 3 Curl Toolkit Introduction to using curl commands.

Chapter 4 Functions In LAN Introduction to the functions in LAN when running IoT_Demo.

Chapter 5 Functions In WAN Introduction to the functions through Espressif Cloud when running
IoT_Demo.

Date Version Release Notes

2016.04 V1.3 Initial Release.

2016.08 V1.4 Added introduction to using curl commands.

Table of Contents
1. Overview	 1
...

2. IoT_Demo Application	 2
..
2.1. IoT_Demo Introduction	 2
...
2.2. Compiling The Firmware	 3
..

2.2.1. Modifying IoT_Demo	 3
...
2.2.2. Compiling IoT_Demo	 5
..

2.3. Create Device On Espressif Cloud	 6
...
2.3.1. Export master_device_key.bin	 6
..
2.3.2. Create Datastreams	 7
..

2.4. Download Addresses	 9
...

3. Curl Toolkit	 11
..

4. Functions in LAN	 12
..
4.1. General Function	 12
..

4.1.1. Get Version Information	 12
..
4.1.2. Set ESP8266 Station to Connect to an AP	 12
...
4.1.3. Set ESP8266 SoftAP Configuration	 14
..

4.2. Reboot or Sleep Function	 15
..
4.3. Search Devices in LAN	 15
...
4.4. Smart Power Plug Device 	 16
...
4.5. Smart Light Device 	 16
..
4.6. Sensor Device 	 18
...

5. Functions in WAN	 19
...
5.1. ESP8266 Device Activation	 19
..
5.2. ESP8266 Device Identification	 20
...

5.3. PING Espressif Cloud	 21
..
5.4. Smart Power Plug Device	 21
..
5.5. Smart Light Device 	 23
..

5.6. Sensor Device 	 26
...
5.7. User-defined Reverse Control	 27..

!

1. Overview

1. Overview
Download ESP8266_NONOS_SDK:
http://www.espressif.com/support/download/sdks-demos
ESP8266_NONOS_SDK\examples\IoT_Demo provides simple demo implementations of
three types of smart devices: Smart Light, Smart Power Plug, and Sensor Device. Featuring
connectivity powered by Espressif Cloud, ESP8266 smart devices can be easily controlled
through Wi-Fi with internet access and thus realise control and data collection operations.
This documentation demonstrates how to control an ESP8266 device based on IoT_Demo
application by using curl commands, and the communication between ESP8266 device
and Espressif Cloud.

📖 Notes:
• Espressif Cloud http://iot.espressif.cn/#/.

• Refer to http://iot.espressif.cn/#/help-en/ when using Espressif Cloud for the first time.

Espressif ! /291 2016.08

http://www.espressif.com/support/download/sdks-demos
http://iot.espressif.cn/#/
http://iot.espressif.cn/%23/help-en/

!

2. IoT_Demo Application

2. IoT_Demo Application
2.1. IoT_Demo Introduction

The structure of ESP8266_NONOS_SDK\examples\IoT_Demo is as Figure 2-1.

!
Figure 2-1. IoT_Demo folder

1. user folder
• user_main.c: the user_init function in it is the application startup routine,

developers can add functions for initialisation in it.
• user_esp_platform.c: demo codes for communicating with Espressif Cloud.
• user_esp_platform_timer.c: realises timer function with Espressif Cloud.
• user_webserver.c: creates a TCP server.
• user_devicefind.c: creates a UDP transmission.
• user_sensor.c: example of ESP8266 sensor device.
• user_plug.c: example of ESP8266 smart plug device.
• user_light.c: example of ESP8266 smart light device.
• user_json.c: demo codes of handling json packet.

2. include folder
• header files of IoT_Demo

3. driver folder
• i2c_master.c: demo codes of ESP8266 running as I2C master.
• key.c: example of using GPIO.

Espressif ! /!2 29 2016.08

!

2. IoT_Demo Application

2.2. Compiling The Firmware
2.2.1. Modifying IoT_Demo

1. Download ESP8266_NONOS_SDK:
http://www.espressif.com/support/download/sdks-demos

2. IoT_Demo provides demo application programs for three devices - Smart Light, Smart
Plug and Sensor. The default device type is Smart Light.

Steps Result

• Taking ESP8266_NONOS_SDK_V2.0.0_16
_07_19 as an example, users should download
and unzip it.

• Copy ESP8266_NONOS_SDK\examples
\IoT_Demo folder (to be compiled) to the
\ESP8266_NONOS_SDK root directory, as
shown in the screenshot 👉 .

Steps Result

• Enable device type in ESP8266_NONOS_SDK
\IoT_Demo\include\user_config.h.

• As is shown in the screenshot 👉 , Smart Light
is chosen as an example.

⚠ Note:
Please enable only one device type to implement
at a time.

Espressif ! /!3 29 2016.08

http://www.espressif.com/support/download/sdks-demos

!

2. IoT_Demo Application

3. Modify the user parameter area location according to the actual flash size of the
ESP8266 hardware module.

Different flash maps correspond to different modified locations in header files, as listed in
Table 2-1.

Steps Result

• As is shown in the screenshot on the right 👉 ,
taking 2048 KB flash and 512+512 map as an
example, modify the value of #define
PRIV_PARAM_START_SEC in
ESP8266_NONOS_SDK\IoT_Demo\include
\user_light.h.

⚠ Note:
If Smart Plug device type is used, modify the value
of #define PRIV_PARAM_START_SEC in
user_plug.h.

• As is shown in the screenshot on the right 👉 ,
taking 2048 kB flash and 512+512 map as an
example, modify the value of #define
ESP_PARAM_START_SEC in
ESP8266_NONOS_SDK\IoT_Demo\include
\user_esp_platform.h.

⚠ Note:
Modify the same definition if Smart Plug or Sensor
device type is used.

Table 2-1. Modifying the Field in include File (Unit: kB)

Default value
(512)

Modified values

512 1024
2048

(512+512)
2048

(1024+1024)
4096

(512+512)
4096

(1024+1024)

0x3C - 0x7C 0x7C 0xFC 0x7C 0xFC

0x3D - 0x7D 0x7D 0xFD 0x7D 0xFD

⚠ Notice:
The default baud rate for ESP8266 running IoT_Demo is 74880.

Espressif ! /!4 29 2016.08

!

2. IoT_Demo Application

2.2.2. Compiling IoT_Demo

Figure 2-2 shows the process of compiling ESP8266_NONOS_SDK\IoT_Demo. For more
details, please refer to documentation “ESP8266 SDK Getting Started Guide”.

!
Figure 2-2. Compile IoT_Demo

0 1 2

0

STEP 1: choose boot version
(0=boot_v1.1, 1=boot_v1.2+, 2=none)
enter(0/1/2, default 2)

STEP 2: choose bin generate
(0=eagle.flash.bin+eagle.irom0text.bin
, 1=user1.bin, 2=user2.bin)
enter (0/1/2, default 0)

FOTA? N

New
version?

Y

N
Y

First-time
usage?

2

N

1Y

0 1 2 3
STEP 3: choose spi speed
(0=20MHz, 1=26.7MHz, 2=40MHz, 3=80MHz)
enter (0/1/2/3, default 2)

0 1 2 3
STEP 4: choose spi mode
(0=QIO, 1=QOUT, 2=DIO, 3=DOUT)
enter (0/1/2/3, default 0)

0 2 3
STEP 5: choose spi size and map
0= 512KB(256KB+ 256KB)
enter (0/2/3/4/5/6, default 0)

Choose as required

Choose as required

Choose as required

4 5 6

Example Option

⚠ Notice:
• In Figure 2-2, the example options are marked in green. Users can select any option as required by the

specific implementation.

• Only sdk_v1.1.0 + boot 1.4 + flash download tool_v1.2 and later versions support compiling option
5 and option 6 in STEP 5.

• user1.bin and user2.bin are generated by compiling the same application code, but note to choose 2
in STEP 2 when generating user2.bin. More details are as below:

- Compile the application to generate user1.bin

- Call “make clean” to clear the temporary files generated from the last step

- Compile the application code to generate user2.bin (make exactly the same choices in the
compiling process except for STEP 2).

• user2.bin is for the FOTA upgrade function, needs not to be downloaded into flash, more details are in
documentation "ESP8266 FOTA Upgrade".

Espressif ! /!5 29 2016.08

http://espressif.com/sites/default/files/documentation/2a-esp8266-sdk_getting_started_guide_en.pdf
http://espressif.com/sites/default/files/documentation/99c-esp8266_fota_guide_en_.pdf

!

2. IoT_Demo Application

2.3. Create Device On Espressif Cloud
To run IoT_Demo, user needs to create a smart device on the Espressif Cloud with device
type same as that in the definition in IoT_Demo source code.
For example, if #define LIGHT_DEVICE is enabled in the
ESP8266_NONOS_SDK\IoT_Demo\include\user_config.h (refer to Section 2.2.1), user
needs to create a smart light device on the Espressif Cloud.

2.3.1. Export master_device_key.bin

master_device_key is the device ID that is automatically assigned by Espressif Cloud
Server when the developer builds a smart device on it. Each ID is unique. The device can
get Espressif Cloud services with this ID.

1. Register an account and log in to Espressif Cloud (http://iot.espressif.cn/#/), create a
device.

📖 Note:
Please refer to http://iot.espressif.cn/#/help-en/ when using Espressif Cloud for the first time.

Steps Result

• As is shown in the screenshot 👉 , log in to
Espressif Cloud, click “Device” and then click
“+ Create”.

• Create a smart light device, for example:
- Name: light-001
- Set privacy level to “Public Device” which

supports sharing.
- Product Choice “Create New Products”
- Product Name: ESP-light
- Product Type: Lighting

 Then click “Create” at the bottom.
• The process is shown in the screenshot 👉

⚠ Note:

• Developers can define (Device) “Name” and
“Product Name” at their will.

• If user wants to create another device type,
please choose another "Product Type", for
example, choose product type "Plugs" to
create a smart plug device.

Espressif ! /!6 29 2016.08

http://iot.espressif.cn/%23/
http://iot.espressif.cn/%23/help-en/

!

2. IoT_Demo Application

2. Export master_device_key.bin from Espressif Cloud.

2.3.2. Create Datastreams

The "Datastreams" on the Espressif Cloud can be user-defined function properties of a
device type. Developer realise the functions in the application (for example, IoT_Demo) after
parsing the "Datastreams" name.
In the IoT_Demo, data streams below are realised:

• For smart light device type, data stream "light" is realised to set the colour and
brightness of light.

• For smart plug device type, data stream "plug-status" is realised to set the status of
power plug.

• For temperature-humidity sensor device type, data stream "tem_hum" is realised to
get the temperature and humidity of sensor.

• A new device page will show up on successful
creation.

• Master Device Key value can be seen in the
device page, as shown in the screenshot 👉 .

Steps Result

Steps Result

• Click "Download Key BIN" which is at the lower
right corner of the "light-001" page, as shown in
the screenshot 👉 .

• The master_device_key.bin in “light-001” will be
downloaded.
- The name of bin file is the same as the value

of Master Device Key of “light-001”.

📖 Notes:
• Refer to the source code: IoT_Demo\user\user_esp_platform.c.

• On the Espressif Cloud, user can create "Datastreams" whether in the device page or in the product
page, they are the same.

• Developer can realise other data streams in the application refer to IoT_Demo.

Espressif ! /!7 29 2016.08

!

2. IoT_Demo Application

1. For a smart light device, user should create "light" data stream on the Espressif Cloud.

2. For a smart plug device, user should create "plug-status" data stream on the Espressif
Cloud.

3. For a temperature-humidity sensor device, user should create "tem_hum" data stream
on the Espressif Cloud.

Steps Result

• Enter the "light-001" device page, click the
"+Create" in Datastreams area.

• Create a "light" data stream, for example:
- Name: light
- Dimension: 5 dimensional (it can has 5

parameters)
- Other information is optional
- Click “Create”

• The process is shown in the screenshot 👉 .

Steps Result

• Create a smart plug device, according to
Section 2.3.1.

• Enter the smart plug device page, click the
"+Create" in Datastreams area.

• Create a "plug-status" data stream, for
example:
- Name: plug-status
- Dimension: 1 dimensional (it can has 1

parameter)
- Other information is optional
- Click “Create”

• The process is shown in the screenshot 👉 .

Steps Result

• Create a temperature-humidity sensor device,
according to Section 2.3.1.

• Enter the sensor device page, click the
"+Create" in Datastreams area.

Espressif ! /!8 29 2016.08

!

2. IoT_Demo Application

2.4. Download Addresses
Table 2-2 lists the download addresses for different flash sizes of ESP8266 module.

• Create a "tem_hum" data stream, for example:
- Name: tem_hum
- Dimension: 2 dimensional (it can has 2

parameters)
- Other information is optional
- Click “Create”

• The process is shown in the screenshot 👉 .

Table 2-2. The Download Addresses (Unit: KB)

Binaries

Download addresses for flash of different capacities

512 1024
2048 4096

512+512 1024+1024 512+512 1024+1024

master_device_key.bin 0x3E000 0x7E000 0x7E000 0xFE000 0x7E000 0xFE000

blank.bin (Partition 1) 0x7B000 0xFB000 0x1FB000 0x3FB000

esp_init_data_default.bin 0x7C000 0xFC000 0x1FC000 0x3FC000

blank.bin (Partition 2) 0x7E000 0xFE000 0x1FE000 0x3FE000

boot.bin 0x00000

user1.bin 0x01000

Table 2-3. FOTA Firmware Description

Binaries Description

master_device_key.bin

Applied from Espressif Cloud for Espressif Cloud services.

Stored in user parameter area, and the storage address is defined by user’s
application program.

The download address in Table 2-2 is an example set in IoT_Demo
according to Section 2.2.1.

blank.bin (Partition 1)

Initializes the RF_CAL parameter area.

Download address is defined by function user_rf_cal_sector_set in
application.

The download address in Table 2-2 is an example set in IoT_Demo.

Provided by Espressif and is under the path ESP266_SDK\bin.

Espressif ! /!9 29 2016.08

!

2. IoT_Demo Application

esp_init_data_default.bin

Initializes other RF parameters area, downloaded at least once.

When RF_CAL parameter area is initialized, this binary needs to be burnt as
well.

Provided by Espressif and is under the path ESP266_SDK\bin.

blank.bin (Partition 2)
Initializes system parameter area.

Provided by Espressif and is under the path ESP266_SDK\bin.

boot.bin Boot file provided by Espressif, under the path ESP266_SDK\bin.

user1.bin Main program generated by compiling application program, under the path
ESP266_NONOS_SDK\bin\upgrade.

Table 2-3. FOTA Firmware Description

Binaries Description

Espressif ! /!10 29 2016.08

!

3. Curl Toolkit

3. Curl Toolkit
Download curl tool: http://curl.haxx.se/download.html

Common errors when using curl command:

• Note that the curl commands are case sensitive - command may fail.
• Only English punctuation can be used in curl command, if Chinese punctuation is

used, the command will fail.
• Wrong number of blank spaces will cause curl commands to fail. If blank spaces are

missed, or if there are extra blank spaces, the curl command may fail.
• Please use the corresponding command format according to your tool (Windows curl

or Linux/Cygwin curl). Do NOT interchange them.
• There is one-to-one correspondence between an ESP8266 device and the random

token it uses to communicate with Espressif Cloud. A random token cannot be
shared with multiple ESP8266 devices.

📖 Notes:
• If using Windows curl tool, please refer to the curl command examples marked as "Windows curl" in

the following chapters.
• If using Linux or Cygwin curl tool, please refer to the curl command examples marked as "Linux /

Cygwin curl" in the following chapters.
• If there is no mark as "Windows curl" or "Linux/Cygwin curl", it means that the command example is

suitable for both the platforms.

Espressif ! /!11 29 2016.08

http://curl.haxx.se/download.html

!

4. Functions in LAN

4. Functions in LAN

4.1. General Function
4.1.1. Get Version Information

PC connects to ESP8266 SoftAP as a Station and sends a curl command as below to get
the version information. The "ip" in the curl command needs to be the actual IP address of
ESP8266 SoftAP.

curl -X GET http://ip/client?command=info

Response:

{

 "Version":{

 "hardware":"0.1",

 "sdk_version":"2.0.0(656edbf)",

 "iot_version":"v1.0.5t45772(a)"

 },

 "Device":{

 "product":"Light",

 "manufacturer":"Espressif Systems"

 }

}

4.1.2. Set ESP8266 Station to Connect to an AP

The default mode of ESP8266 device is SoftAP+Station mode when running IoT_Demo.
PC connects to ESP8266 SoftAP as a Station, and sends a curl command as below to set
ESP8266 to connect to an AP as a Station.

Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -d '{"Request":
{"Station":{"Connect_Station":

📖 Notes:
• The default IP address of ESP8266 SoftAP is 192.168.4.1.

• The IP address of ESP8266 Station is assigned by AP (router) after connecting to it.

• The "ip" in curl commands below needs to be the actual IP address of ESP8266 SoftAP or Station.

Espressif ! /!12 29 2016.08

!

4. Functions in LAN

{"ssid":"tenda","password":"1234567890","token":
"1234567890123456789012345678901234567890"}}}}' http://192.168.4.1/
config?command=wifi

Windows curl:

curl -X POST -H "Content-Type:application/json" -d "{\"Request\":
{\"Station\":{\"Connect_Station\":{\"ssid\":\"tenda\",\"password\":
\"1234567890\",\"token\":
\"1234567890123456789012345678901234567890\"}}}}" http://192.168.4.1/
config?command=wifi

Special AP configuration

If an AP is encrypted as WEP HEX, the password needs to be converted into HEX in the
curl command.
For example, SSID of AP is "wifi_1", password is "tdr0123456789", encrypt as "WEP". To
connect to this AP, the curl command should be as below:
Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -d '{"Request":
{"Station":{"Connect_Station":
{"ssid":"wifi_1","password":"74647230313233343536373839","token":
"1234567890123456789012345678901234567890"}}}}' http://192.168.4.1/
config?command=wifi

Windows curl:

curl -X POST -H "Content-Type:application/json" -d "{\"Request\":
{\"Station\":{\"Connect_Station\":{\"ssid\":\"wifi_1\",\"password\":
\"74647230313233343536373839 \" , \"token\":
\"1234567890123456789012345678901234567890\"}}}}" http://192.168.4.1/
config?command=wifi

Query the connection status

During the connection, the curl command below can be sent through PC to query the
status of ESP8266 connecting to AP.

curl -X GET http://ip/client?command=status

⚠ Notice:

The red token in the curl command above is a random HEX string of 40 bytes, it cannot be shared with other
devices.

• ESP8266 device sends the random token to Espressif Cloud for activation and identification.
• Then user will apply for control access to the ESP8266 device by sending the same random token to

Espressif Cloud.
• So there is one-to-one correspondence between ESP8266 device and random token. A random token

cannot be shared with multiple ESP8266 devices.

Espressif ! /!13 29 2016.08

!

4. Functions in LAN

The definition of "status" is as below:

enum {

 Station_IDLE = 0,

 Station_CONNECTING,

 Station_WRONG_PASSWORD,

 Station_NO_AP_FOUND,

 Station_CONNECT_FAIL,

 Station_GOT_IP

};

enum {

 DEVICE_CONNECTING = 40,

 DEVICE_ACTIVE_DONE,

 DEVICE_ACTIVE_FAIL,

 DEVICE_CONNECT_SERVER_FAIL

};

4.1.3. Set ESP8266 SoftAP Configuration

The curl command below can be used to set the configuration of ESP8266 SoftAP. For
example, set the SSID, password of ESP8266 SoftAP.

Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -d '{"Request":
{"SoftAP":{"Connect_SoftAP":{"authmode":"OPEN", "channel":6,
"ssid":"ESP_IOT_SoftAP", "password":""}}}}' http://192.168.4.1/
config?command=wifi

Windows curl:

curl -X POST -H "Content-Type:application/json" -d "{\"Request\":
{\"SoftAP\":{\"Connect_SoftAP\":{\"authmode\":\"OPEN\",\"channel\":
6,\"ssid\":\"ESP_IOT_SoftAP\",\"password\":\"\"}}}}" http://
192.168.4.1/config?command=wifi

⚠ Notice:

• The "authmode" can be: OPEN, WPAPSK, WPA2PSK, WPAPSK/WPA2PSK.
• The "password" has to be 8 bytes or longer, if the ESP8266 SoftAP is encrypted.

Espressif ! /!14 29 2016.08

!

4. Functions in LAN

4.2. Reboot or Sleep Function
• For smart power plug or smart light device, the curl command below can be used to

set the device to reboot.

curl -X POST http://ip/config?command=reboot

• For sensor device, the curl command below can be used to set the device to sleep.

curl -X POST http://ip/config?command=sleep

The sensor device will wakeup automatically after sleeping 30 seconds.

4.3. Search Devices in LAN
Users can find ESP8266 devices in the LAN by sending UDP broadcast packets to port
1025 through PC. Steps are as below:

• PC sends UDP broadcast message "Are You Espressif IOT Smart Device?" to port
1025 using a network debug tool.

• ESP8266 devices are listening to port 1025, if the message "Are You Espressif IOT
Smart Device?" is received, ESP8266 devices will respond with its information.

Response:
• If it is an ESP8266 smart power plug device, it will respond as shown:

I’m Plug.xx:xx:xx:xx:xx:xx yyy.yyy.yyy.yyy

• If it is an ESP8266 smart light device, it will respond as shown:

I’m Light.xx:xx:xx:xx:xx:xx yyy.yyy.yyy.yyy

• If it is an ESP8266 temperature-humidity sensor, it will respond as shown:

I’m Humiture.xx:xx:xx:xx:xx:xx yyy.yyy.yyy.yyy

• If it is an ESP8266 flammable gas sensor, it will respond as shown:

I’m Flammable Gas.xx:xx:xx:xx:xx:xx yyy.yyy.yyy.yyy

📖 Note:
The source code to realise this function is in IoT_Demo\user\user_devicefind.c.

📖 Notes:
• "xx:xx:xx:xx:xx:xx" is the actual MAC address of a ESP8266 device.

• "yyy.yyy.yyy.yyy" is the actual IP address of a ESP8266 device.

Espressif ! /!15 29 2016.08

!

4. Functions in LAN

4.4. Smart Power Plug Device
Get the status of smart power plug device

If it is an ESP8266 smart power plug device, the curl command below can be sent to the
device to query its status.

curl -X GET http://ip/config?command=switch

Response:

{

 "Response": {

 "status": 0

 }

}

Set the status of smart power plug device

If it is an ESP8266 smart power plug device, the curl command below can be sent to the
device to set its status.
Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -d '{"Response":
{"status":1}}' http://ip/config?command=switch

Windows curl:

curl -X POST -H "Content-Type:application/json" -d "{\"Response\":
{\"status\":1}}" http://ip/config?command=switch

4.5. Smart Light Device
Get the information of smart light device

If it is an ESP8266 smart light device, the curl command below can be used to get the
information of the device.

curl -X GET http://ip/config?command=light

Response:

{

 "period":1000,

 "status":3,

📖 Note:
"status": 0 means that the power plug is power-off, 1 means that the power plug is power-on.

Espressif ! /!16 29 2016.08

!

4. Functions in LAN

 "color":{

 "red":0,

 "green":0,

 "blue":0,

 "white":255

 },

 "mdev_mac":”5CCF7F0A1454"

}

Set configuration of smart light device

If it is an ESP8266 smart light device, the curl command below can be used to set
configuration of the device.

• For versions later than ESP8266_NONOS_SDK_V2.0, the curl command is as below:

Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -d '{"period":
1000,"status":3,"color":{"red":0,"green":0,"blue":0,"white":255}'
http://ip/config?command=light

Windows curl:

curl -X POST -H "Content-Type:application/json" -d “{\”period\":
1000,\”status\":3,\”color\”:{\”red\":0,\”green\":0,\”blue\":0,\”white
\":255}' http://ip/config?command=light

• For version ESP8266_NONOS_SDK_V2.0 and earlier, the curl command is as
follows:

📖 Notes:
• "period": the period of PWM, unit: millisecond.

• "status": the status of smart light

- 0: power-off

- 1: power-on

- 2: disable the white light, but change the colour of red light, blue light and green light

- 3: disable the red light, blue light and green light, but change the brightness of the white light

• "rgb": the range of colour depends on the PWM duty

- version ESP8266_NONOS_SDK_V2.0 and earlier, the range is [0, 22222]

- versions later than ESP8266_NONOS_SDK_V2.0, the range is [0, 255]

- version ESP8266_RTOS_SDK_V1.4 and earlier, the range is [0, 1023]

- versions later than ESP8266_RTOS_SDK_V1.4, the range is [0, 255]

Espressif ! /!17 29 2016.08

!

4. Functions in LAN

Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -d '{"period":1000,
"rgb":{"red":200, "green":0, "blue”:0, “cwhite”:0, “wwhite”:0}}'
http://ip/config?command=light

Windows curl:

curl -X POST -H "Content-Type:application/json" -d "{\"period\":
1000,\"rgb\":{\"red\":200,\"green\":0,\"blue\":0}}" http://ip/config?
command=light

4.6. Sensor Device
ESP8266 sensor device running IoT_Demo cannot accessed within a local network. The
status of the sensor must be obtained from Espressif Cloud through the internet.

Espressif ! /!18 29 2016.08

!

5. Functions in WAN

5. Functions in WAN

5.1. ESP8266 Device Activation
Device

When the ESP8266 device has access to the internet via a router (refer to Section 4.1.2),
the ESP8266 device will connect to Espressif Cloud automatically.

If it is the first time that ESP8266 device connects to the Espressif Cloud, the device will
send TCP packet below to Espressif Cloud (port 8000) for activation.

{"path": "/v1/device/activate/", "method": "POST", "meta":
{"Authorization": "token HERE_IS_THE_MASTER_DEVICE_KEY"}, "body":
{"encrypt_method": "PLAIN", "bSSID": "18:fe:34:70:12:00", "token":
"1234567890123456789012345678901234567890"}}

Espressif Cloud will respond as follows:

{"status": 200, "device": {device}, "key": {key}, "token":
{token}}

PC

User can apply for device control from Espressif Cloud by sending curl command as below.
Please note that in order to send command to Espressif Cloud, PC needs to have internet
access.
Linux/Cygwin curl:

curl -X POST -H "Authorization:token
c8922638bb6ec4c18fcf3e44ce9955f19fa3ba12" -d '{"token":
"1234567890123456789012345678901234567890"}' http://iot.espressif.cn/
v1/key/authorize/

Windows curl:

curl -X POST -H "Authorization:token
c8922638bb6ec4c18fcf3e44ce9955f19fa3ba12" -d "{\"token\":

📖 Notes:
• "Device" below means that ESP8266 device will communicate with the Espressif Cloud automatically.

• "PC" below means that user can send curl commands through PC to control ESP8266 device.

📖 Notes:
• "HERE_IS_THE_MASTER_DEVICE_KEY" means the actual master device key of ESP8266.

• The red token in the curl command is the random token set to connect to AP in Section 4.1.2.

Espressif ! /!19 29 2016.08

!

5. Functions in WAN

\"1234567890123456789012345678901234567890\"}" http://
iot.espressif.cn/v1/key/authorize/

Espresso Cloud will respond as follows:

{"status": 200, "key": {"updated": "2014-05-12 21:22:03",
"user_id": 1, "product_id": 0, "name": "device activate share
token", "created": "2014-05-12 21:22:03", "source_ip": "*",
"visibly": 1, "id": 149, "datastream_tmpl_id": 0, "token":
"e474bba4b8e11b97b91019e61b7a018cdbaa3246", "access_methods": "*",
"is_owner_key": 1, "scope": 3, "device_id": 29,
"activate_status": 1, "datastream_id": 0, "expired_at": "2288-02-22
20:31:47"}}

5.2. ESP8266 Device Identification
Device

After activation, every time ESP8266 device accesses the Espressif Cloud (including the
current time of activation), the device will send TCP packet below to Espressif Cloud (port
8000) for identification.

{"nonce": 560192812, "path": "/v1/device/identify", "method":
"GET", "meta": {"Authorization": "token
HERE_IS_THE_MASTER_DEVICE_KEY"}}

If the identity authentication passed, the Espressif Cloud will respond as follows:

📖 Note:
"c8922638bb6ec4c18fcf3e44ce9955f19fa3ba12" in the curl command means the user key in
Espressif Cloud. After registering on the Espressif Cloud, the user key can be obtained as follows:

- Login to Espressif Cloud (http://iot.espressif.cn/) with user name and password.

- Click the user name in the top right corner.

- Click "Settings".

- Click "Developer" to find the user key.

📖 Note:
"e474bba4b8e11b97b91019e61b7a018cdbaa3246" in the response means the owner key that
Espressif Cloud provided to the user, makes the user the owner of the ESP8266 device. User can control the
ESP8266 device through Espressif Cloud by using the owner key.

📖 Notes:
• "nonce" is a random number. Espressif Cloud will respond with the same "nonce" value of the

corresponding device message.

• "HERE_IS_THE_MASTER_DEVICE_KEY" means the actual master device key of ESP8266.

Espressif ! /!20 29 2016.08

http://iot.espressif.cn/

!

5. Functions in WAN

{"device": {"productbatch_id": 0, "last_active": "2014-06-19
10:06:58", "ptype": 12335, "activate_status": 1, "serial":
"334a8481", "id": 130, "bSSID": "18:fe:34:97:d5:33", "last_pull":
"2014-06-19 10:06:58", "last_push": "2014-06-19 10:06:58",
"location": "", "metadata": "18:fe:34:97:d5:33 temperature",
"status": 2, "updated": "2014-06-19 10:06:58", "description":
"device-description-79eba060", "activated_at": "2014-06-19
10:06:58", "visibly": 1, "is_private": 1, "product_id": 1,
"name": "device-name-79eba060", "created": "2014-05-28 17:43:29",
"is_frozen": 0, "key_id": 387}, "nonce": 560192812, "message":
"device identified", "status": 200}

5.3. PING Espressif Cloud
Device

In order to keep the connection between the ESP8266 device and the Espressif Cloud, the
device will send TCP packet below to Espressif Cloud (port 8000) every 50 seconds.

{"path": "/v1/ping/", "method": "POST", "meta": {"Authorization":
"token HERE_IS_THE_MASTER_DEVICE_KEY"}}

The Espressif Cloud will respond as follows:

{"status": 200, "message": "ping success", "datetime": "2014-06-19
09:32:28", "nonce": 977346588}

5.4. Smart Power Plug Device
Device:

• When ESP8266 smart power plug device receives the GET command from the
Espressif Cloud, it will respond with its status.

The GET command from the Espressif Cloud is as shown:

{"body": {}, "nonce": 33377242, "is_query_device": true, "get":
{}, "token": "HERE_IS_THE_OWNER_KEY", "meta": {"Authorization":
"token HERE_IS_THE_OWNER_KEY"}, "path": "/v1/datastreams/plug-
status/datapoint/", "post": {}, "method": "GET"}

📖 Note:
The identification is necessary for ESP8266 smart power plug and smart light devices.

📖 Note:
The ping mechanism is necessary for ESP8266 smart power plug and smart light devices.

Espressif ! /!21 29 2016.08

!

5. Functions in WAN

ESP8266 smart power plug device will respond as follows:

{"status": 200, "datapoint": {"x": 0}, "nonce": 33377242,
"is_query_device": true}

• When ESP8266 smart power plug device receives the POST command from the
Espressif Cloud, it will change its status according to the command.

For example, the Espressif Cloud sends command as shown below to power-up the smart
power plug device:

{"body": {"datapoint": {"x": 1}}, "nonce": 620580862,
"is_query_device": true, "get": {}, "token":
"HERE_IS_THE_OWNER_KEY", "meta": {"Authorization": "token
HERE_IS_THE_OWNER_KEY"}, "path": "/v1/datastreams/plug-status/
datapoint/", "post": {}, "method": "POST", "deliver_to_device":
true}

The ESP8266 smart power plug device will respond as shown below after changing its
status:

{"status": 200, "datapoint": {"x": 1}, "nonce": 620580862,
"deliver_to_device": true}

PC:

Get the status of smart power plug device

If it is an ESP8266 smart power plug device, the curl command below can be sent to the
Espressif Cloud to get the status of the device.

curl -X GET -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" http://iot.espressif.cn/v1/datastreams/
plug-status/datapoint/

The Espressif Cloud will respond as shown:

{"status": 200, "nonce": 11432809, "datapoint": {"x": 1},
"deliver_to_device": true}

Set the status of smart power plug device

If it is an ESP8266 smart power plug device, the curl command below can be sent to the
Espressif Cloud to set the status of the device.

📖 Note:
The "nonce" value in the response should be the same as the "nonce" value in the corresponding
command from Espressif Cloud.

Espressif ! /!22 29 2016.08

!

5. Functions in WAN

Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" -d '{"datapoint":{"x":1}}' http://
iot.espressif.cn/v1/datastreams/plug-status/datapoint/?
deliver_to_device=true

Windows curl:

curl -X POST -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" -d "{\"datapoint\":{\"x\":1}}" http://
iot.espressif.cn/v1/datastreams/plug-status/datapoint/?
deliver_to_device=true

The Espressif Cloud will respond as shown:

{"status": 200, "nonce": 11432809, "datapoint": {"x": 1},
"deliver_to_device": true}

5.5. Smart Light Device
Device:

When ESP8266 smart light device receives the GET command from the Espressif Cloud, it
will respond with its status.
The GET command from the Espressif Cloud is as follows:

{"body": {}, "nonce": 8968711, "is_query_device": true, "get": {},
"token": "HERE_IS_THE_OWNER_KEY", "meta": {"Authorization": "token
HERE_IS_THE_OWNER_KEY"}, "path": "/v1/datastreams/light/datapoint/",
"post": {}, "method": "GET"}

• For versions later than ESP8266_NONOS_SDK_V2.0, the ESP8266 smart light
device will respond as follows:

{"nonce": 5619936, "datapoint": {"x": 1, "y": 1000, "z":{"red": 0,
"green": 0, "blue": 0, "white": 255}}, "deliver_to_device": true}

📖 Notes:
• "x": the status of smart light

- 0: power-off

- 1: power-on

- 2: disable the white light, but change the colour of red light, blue light and green light

- 3: disable the red light, blue light and green light, but change the brightness of the white light
• "y": the period of PWM, unit: millisecond.
• "z": the colour information

Espressif ! /!23 29 2016.08

!

5. Functions in WAN

• For version ESP8266_NONOS_SDK_V2.0 and earlier, the ESP8266 smart light
device will respond as shown:

{"nonce": 5619936, "datapoint": {"x": 1, "y": 1000, "z":100, “k":1,
“l":2}, "deliver_to_device": true}

When ESP8266 smart light device receives the POST command from the Espressif Cloud,
it will change its status according to the command.

For example, the Espressif Cloud sends command as shown below to change the colour of
the smart light device:

{"body": {"datapoint": {"y": 2, "x": 1, "k": 4, "z": 3, "l": 5}},
"nonce": 65470541, "mdev_mac": "18fe34ed861c", "meta":
{"Authorization": "token HERE_IS_THE_OWNER_KEY", "Time-Zone": "Asia/
Kashgar"}, "path": "/v1/datastreams/light/datapoint/", "method":
"POST", "deliver_to_device": true}

The ESP8266 smart light device will respond as shown below after changing its
configuration.

• For versions later than ESP8266_NONOS_SDK_V2.0, the ESP8266 smart light
device will respond as shown:

{"status": 200,"nonce": 65470541, "datapoint": {"x": 1,"y": 1000,"z":
{"red": 0, "green": 0, "blue": 0, "white": 255}},"deliver_to_device":
true,"mdev_mac":"18FE34ED861C"}

• For the version ESP8266_NONOS_SDK_V2.0 and earlier, the ESP8266 smart light
device will respond as shown:

{"status": 200,"nonce": 65470541, "datapoint": {"x": 1,"y": 1000,”z":
1, “k":2, “l":3},"deliver_to_device":true,"mdev_mac":"18FE34ED861C"}

PC:

Get the information of smart light device

📖 Notes:
• "x": the status of smart light

- 0: power-off

- 1: power-on

- 2: disable the white light, but change the colour of red light, blue light and green light

- 3: disable the red light, blue light and green light, but change the brightness of the white light

• "y": the period of PWM, unit: millisecond.

• "z": the colour information

Espressif ! /!24 29 2016.08

!

5. Functions in WAN

If it is an ESP8266 smart light device, the curl command below can be sent to the Espressif
Cloud to get the information of the device.

curl -X GET -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" http://iot.espressif.cn/v1/datastreams/
light/datapoint/

Response:
• For versions later than ESP8266_NONOS_SDK_V2.0, the light device will respond

as shown:

{"status": 200, "datapoint": {"updated": "2016-07-05 15:06:17",
"created": "2016-07-05 15:06:17", "datatype": 0, "k": 0.0, "visibly":
1, "datastream_id": 7969, "at": "2016-07-05 15:06:17", "y": 1000,
"x": 2, "z": {"red": 0, "green": 255, "blue": 0, "white": 0} , "id":
4131591, "l": 0.0}}

• For the version ESP8266_NONOS_SDK_V2.0 and earlier, the light device will
respond as shown:

{"status": 200, "datapoint": {"updated": "2016-07-05 15:06:17",
"created": "2016-07-05 15:06:17", "datatype": 0, "k": 0.0, "visibly":
1, "datastream_id": 7969, "at": "2016-07-05 15:06:17", "y": 0.0, "x":
1000.0, "z": 0.0, "id": 4131591, "l": 0.0}}

Set configuration of smart light device

If it is an ESP8266 smart light device, the curl command below can be sent to the Espressif
Cloud to set the configuration of the light device.

• For versions later than ESP8266_NONOS_SDK_V2.0, the curl command is as
shown:

Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" -d '{"datapoint":{"x": 2, "y": 1000,
"z": {"red": 0, "green": 255, "blue": 0, "white": 0}}} ' http://
iot.espressif.cn/v1/datastreams/light/datapoint/?deliver_to_device
=true

📖 Notes:
• "x": the status of smart light

- 0: power-off

- 1: power-on

- 2: disable the white light, but change the colour of red light, blue light and green light

- 3: disable the red light, blue light and green light, but change the brightness of the white light

• "y": the period of PWM, unit: millisecond.

• "z": the colour information

Espressif ! /!25 29 2016.08

!

5. Functions in WAN

Windows curl:

curl -X POST -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" -d "{\"datapoint\":{\"x\": 100, \"y\":
200, \"z\": {\”red\": 0, \”green\": 255, \”blue\": 0, \"white\":
0}}}" http://iot.espressif.cn/v1/datastreams/light/datapoint/?
deliver_to_device=true

The Espressif Cloud will respond as shown:

{"nonce": 28541403.0, "status": 200, "mdev_mac": "5CCF7F14C682",
"datapoint": {"updated": "2016-07-28 13:51:54", "created":
"2016-07-28 13:51:54", "datatype": 0, "k": 0, "visibly": 1, "id":
4807512, "at": "2016-07-28 13:51:54", "y": 1000, "x": 2, "z": {"red":
0, "green": 255, "blue": 0, "white": 0}, "datastream_id": 7969, "l":
50}}

• For the version ESP8266_NONOS_SDK_V2.0 and earlier, the curl command is as
shown here:

Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" -d '{"datapoint":{"x": 100, "y": 200,
"z": 0, "k": 0, "l": 50}} ' http://iot.espressif.cn/v1/datastreams/
light/datapoint/?deliver_to_device=true

Windows curl:

curl -X POST -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" -d "{\"datapoint\":{\"x\": 100, \"y\":
200, \"z\": 0, \"k\": 0, \"l\": 50}}" http://iot.espressif.cn/v1/
datastreams/light/datapoint/?deliver_to_device=true

The Espressif Cloud will respond with the following:

{"nonce": 28541403.0, "status": 200, "mdev_mac": "5CCF7F14C682",
"datapoint": {"updated": "2016-07-28 13:51:54", "created":
"2016-07-28 13:51:54", "datatype": 0, "k": 0, "visibly": 1, "id":
4807512, "at": "2016-07-28 13:51:54", "y": 200, "x": 100, "z": 0,
"datastream_id": 7969, "l": 50}}

5.6. Sensor Device
Device:

Running IoT_Demo, ESP8266 temperature-humidity sensor device will upload its datapoint
to the Espressif Cloud automatically. The packet ESP8266 sent will be as shown:

{"nonce": 153436234, "path": "/v1/datastreams/tem_hum/datapoint/",
"method": "POST", "body": {"datapoint": {"x": 35, "y": 32}},
"meta": {"Authorization": "token HERE_IS_THE_MASTER_DEVICE_KEY"}}

The Espressif Cloud will respond with the following:

Espressif ! /!26 29 2016.08

!

5. Functions in WAN

{"status": 200, "datapoint": {"updated": "2014-05-14 18:42:54",
"created": "2014-05-14 18:42:54", "visibly": 1, "datastream_id":
16, "at": "2014-05-14 18:42:54", "y": 32, "x": 35, "id": 882644}}

PC:

If it is an ESP8266 temperature-humidity sensor device, the curl command below can be
sent to the Espressif Cloud to get the latest temperature and humidity information of the
sensor.

curl -X GET -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" http://iot.espressif.cn/v1/datastreams/
tem_hum/datapoint

If it is an ESP8266 temperature-humidity sensor device, the curl command below can be
sent to the Espressif Cloud to get the historical temperature and humidity information of the
sensor.

curl -X GET -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" http://iot.espressif.cn/v1/datastreams/
tem_hum/datapoints

5.7. User-defined Reverse Control
The Espressif Cloud supports user-defined reverse control actions. User can send an
action to the ESP8266 device through the Espressif Cloud with additional parameters to
realise flexible reverse control.
The curl command format of user-defined reverse controlling is as follows:

Linux/Cygwin curl:

curl -X GET -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" 'http://iot.espressif.cn/v1/device/rpc/?
deliver_to_device=true&action=your_custom_action&any_parameter=any_va
lue'

Windows curl:

curl -X GET -H "Content-Type:application/json" -H "Authorization:
token HERE_IS_THE_OWNER_KEY" "http://iot.espressif.cn/v1/device/rpc/?

📖 Notes:
• "x": the datapoint of temperature

• "y": the datapoint of humidity

• The latest time stamp will be in the response of Espressif Cloud.

📖 Note:
If the Espressif Cloud respond with "remote device is disconnect or busy", it is normal, the reason being that
the temperature-humidity sensor cannot be remotely controlled.

Espressif ! /!27 29 2016.08

!

5. Functions in WAN

deliver_to_device=true&action=your_custom_action&any_parameter=any_va
lue"

The packet that ESP8266 device receives will be as shown here:

{"body": {}, "nonce": 872709859, "get": {"action":
"your_custom_action", "any_parameter": "any_value",
"deliver_to_device": "true"}, "token": "HERE_IS_THE_DEVICE_KEY",
"meta": {"Authorization": "token HERE_IS_THE_DEVICE_KEY "}, "path":
"/v1/device/rpc/", "post": {}, "method": "GET",
"deliver_to_device": true}

📖 Notes:
• The "your_custom_action", "any_parameter", "any_value" marked red above denote the

user-defined configuration of reverse controlling.
• Developer needs to add functions in the IoT_Demo to parse the action and parameter of reverse

controlling, and realise the corresponding operation.
• The user-defined reverse controlling actions will not be saved in the Espressif Cloud, it does not record

history.

Espressif ! /!28 29 2016.08

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without
notice.
THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.
All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.
All trade names, trademarks and registered trademarks mentioned in this document are
property of their respective owners, and are hereby acknowledged.
Copyright © 2016 Espressif Inc. All rights reserved.

Espressif IOT Team

www.espressif.com

�

http://www.espressif.com

